Engineering Drawing

Anup Ghosh

Department of Aerospace Engineering Indian Institute of Technology Kharagpur

August 26, 2011

戶 ▶ ◀

Planes perpendicular to a ref. plane and parallel to other

Planes perpendicular to both planes

Planes perpendicular to a ref. plane and inclined to other

Planes perpendicular to a ref. plane and inclined to other

Planes ?

Procedure

Procedure

- **→** → **→**

Problem

- A square of 50mm side.
- A corner is on HP.
- $\theta = 30^0 \text{ for a diagonal.}$
- $\phi = 45^{\circ}$ for the other diagonal.

Steps for drawing

- Assume it as lying on HP.
- Make the diagonal || to VP to $\theta = 30^{\circ}$.
- Make the other diagonal \perp to VP to $\phi = 45^{\circ}$.

< □ > < 同 > < 回 >

Observations

- It appears that the rectangle is rotated keeping the point 'a' fixed.
- When a plan/elevation does not change any dimension the names remain same.

Problem

- A square of 50mm side.
- A corner is on HP.
- $\theta = 30^0 \text{ for a diagonal.}$
- $\phi = 45^{\circ}$ for the other diagonal.

Steps for drawing

- Assume it as lying on HP.
- Make the diagonal || to VP to $\theta = 30^0$.
- Make the other diagonal \perp to VP to $\phi = 45^{\circ}$.

▲ 同 ▶ ▲ 目

Observations

- It appears that the rectangle is rotated keeping the point 'a' fixed.
- When a plan/elevation does not change any dimension the names remain same.

Problem

- A square of 50mm side.
- A corner is on HP.
- $\theta = 30^0 \text{ for a diagonal.}$
- $\phi = 45^{\circ}$ for the other diagonal.

Steps for drawing

- Assume it as lying on HP.
- Make the diagonal || to VP to $\theta = 30^0$.
- Make the other diagonal \perp to VP to $\phi = 45^{\circ}$.

Observations

- It appears that the rectangle is rotated keeping the point 'a' fixed.
- When a plan/elevation does not change any dimension the names remain same.

Procedure oblique plane

Problem

- A circle of dia 50mm.
- Resting on HP with angle $\theta = 45^0$.
- a) TV/plan makes and angle 30⁰ with VP.
- b) the diameter inclined to HP makes an angle $\phi = 30^{\circ}$ with VP.

Steps for drawing

- Only the plan form is tilted to 30⁰.
- Draw original length of diameter a₁b₂ inclined at 30⁰.
- Draw rs and cut projected length (a₁b₁) as a₁b₃ on rs.

Problem

- A circle of dia 50mm.
- Resting on HP with angle $\theta = 45^0$.
- a) TV/plan makes and angle 30⁰ with VP.
- b) the diameter inclined to HP makes an angle $\phi = 30^{\circ}$ with VP.

Steps for drawing

- Only the plan form is tilted to 30⁰.
- Oraw original length of diameter a₁b₂ inclined at 30⁰.
- Oraw rs and cut projected length (a₁b₁) as a₁b₃ on rs.

Procedure oblique plane

æ

