Overview of Aeromodelling Materials and Tools Power Sources Construction Techniques Radio Control of Model

Aeromodelling

Anup Ghosh

Department of Aerospace Engineering Indian Institute of Technology Kharagpur

First Powered Flight

First powered flight on 17 December 1903, for 120 feet (36.5 m) in 12 seconds, at a speed of only 6.8 mph over the ground.

Outline

- Overview of Aeromodelling
- 2 Materials and Tools
- Begin and Power Sources
- 4 Construction Techniques
- 5 Radio Control of Model

Types of Flying Models

- Free Flight Models.
 - Chuck/catapult Gliders.
 - Rubber Powered.
 - Tow-line Gliders.
- Control Line Models.
 - Trainer.
 - Stunt and Combat.
 - Radio Control Models.
 - Free Flight (2 Channel Control)
 - Three channel and

Types of Flying Models

NEUTRAL

- Free Flight Models.
 - Chuck/catapult Gliders.
 - Rubber Powered.
 - Tow-line Gliders.
 - Control Line Models.
 - Trainer.
 - Stunt and Combat.
 - Radio Control Models.
 - Free Flight (2 Channel Control).
 - Three channel and

DOWN

Types of Flying Models

- Free Flight Models.
 - Chuck/catapult Gliders.
 - Rubber Powered.
 - Tow-line Gliders.
- Control Line Models.
 - Trainer.
 - Stunt and Combat.
 - Radio Control Models.
 - Free Flight (2 Channel Control).
 - Three channel and four channel

Power sources used in Aeromodelling

Generally two types of continuous power sources are used in aeromodelling

- Electricity from rechargeable batteries and
- IC engines.

Except the above power sources **rubber band** powered and **compressed air** powered models are also very popular.

Outline

- Overview of Aeromodelling
- 2 Materials and Tools
- 3 Power Sources
- 4 Construction Techniques
- 5 Radio Control of Model

- Balsa wood strips, bamboo sticks etc.
- ② Thermoplastics.
- Olystyrene; commonly known as Thermocol.
- Composite (glass or carbon fibre reinforced).
- Japanese tissue, bamboo paper and silk as covering.
- O Adhesives like Feviquick, Balsa

- Balsa wood strips, bamboo sticks etc.
- Thermoplastics.
- Polystyrene; commonly known as Thermocol.
- Composite (glass or carbon fibre reinforced).
- Japanese tissue, bamboo paper and silk as covering.
- 6 Adhesives like Feviquick, Balsa

- Balsa wood strips, bamboo sticks etc.
- ② Thermoplastics.
- Polystyrene; commonly known as Thermocol.
- Composite (glass or carbon fibre reinforced).
- Japanese tissue, bamboo paper and silk as covering.
- Adhesives like Feviquick, Balsa

- Balsa wood strips, bamboo sticks etc.
- Thermoplastics.
- Polystyrene; commonly known as Thermocol.
- Composite (glass or carbon fibre reinforced).
- Japanese tissue, bamboo paper and silk as covering.
- 6 Adhesives like Feviquick, Balsa

- Balsa wood strips, bamboo sticks etc.
- Thermoplastics.
- Polystyrene; commonly known as Thermocol.
- Composite (glass or carbon fibre reinforced).
- Japanese tissue, bamboo paper and silk as covering.
- Adhesives like Feviquick, Balsa

- Balsa wood strips, bamboo sticks etc.
- Thermoplastics.
- Polystyrene; commonly known as Thermocol.
- Composite (glass or carbon fibre reinforced).
- Japanese tissue, bamboo paper and silk as covering.
- 6 Adhesives like Feviquick, Balsa

Tools

Some of the tools used to build a model is shown in the figure below.

Outline

- Overview of Aeromodelling
- 2 Materials and Tools
- 3 Power Sources
- 4 Construction Techniques
- 5 Radio Control of Model

Rechargeable Batteries

Rechargeable batteries and Electronic Speed Controller (ESC) are used to drive motors of a model aircraft. Two different types of batteries are used in aeromodelling.

- Ni-MH batteries, cell voltage is 1.2 V, in series connection of 8 to 9 cells are generally used.
- Lithium-Polymer batteries, cell voltage is 3.7 V.

In recent years Li Po batteries are more popular in aeromodelling because of less wight and faster discharge rate.

IC engines

Two different types of IC engines are used in aeromodelling.

Diesel engines (compression ignition) and

Glow Plug engines or Petrol engines.

Diesel Engines

- It is a two-stroke diesel engine. An adjustable compression ratio helps the ignition.
- Fuel: A mixture of ether, kerosene and lubricant (castor oil or synthetic oil.)
- Available from as small as 0.01 in³ to over 1.0 in³ (0.16 cc16 cc).

Diesel Engines

- It is a two-stroke diesel engine. An adjustable compression ratio helps the ignition.
- Fuel: A mixture of ether, kerosene and lubricant (castor oil or synthetic oil.)
- Available from as small as 0.01 in³ to over 1.0 in³ (0.16 cc16 cc).

Diesel Engines

- It is a two-stroke diesel engine. An adjustable compression ratio helps the ignition.
- Fuel: A mixture of ether, kerosene and lubricant (castor oil or synthetic oil.)
- Available from as small as 0.01 in³ to over 1.0 in³ (0.16 cc16 cc).

Glow Plug Engines

- It is a Two-Stroke petrol engine. A glow-plug helps the ignition.
- Fuel: A mixture of lubricant (castor oil
- Available from as < -ocl@@cc) = > < = > = =

Glow Plug Engines

- It is a Two-Stroke petrol engine. A glow-plug helps the ignition.
- Fuel: A mixture of slow burning methanol. nitromethane and **lubricant** (castor oil or synthetic oil.)
- Available from as < -ocl@@cc) = > < = > = =

Glow Plug Engines

- It is a Two-Stroke petrol engine. A glow-plug helps the ignition.
- Fuel: A mixture of slow burning methanol. nitromethane and **lubricant** (castor oil or synthetic oil.)
- Available from as small as 0.01 in^3 to over 1.0 in³ (0.16 =cc16 cc) = > < = > =

Opening of Needle Valve

 Open the needle-valve 3 turns (for 15LA-S), 1 - 2 turns (for 25,40,46LA-S) in the direction of arrow from the closed position.

Priming

Aeromodelling

Anup Ghosh

Priming

Turn the engine for 3 to 4 seconds by an electric starter without connecting glowplug battery.

Throttle Position

Heat glow-plug

Apply electric starter to start engine.

Open the throttle fully.

Heat glow-plug

Apply electric starter to start engine.

Heat glow-plug

- Apply electric starter to start engine.
- Open the throttle fully.

Hold model securely when starting

Needle-valve adjustment

- Gradually close the needle-valve until the exhaust sound changes from an irregular pitch (four-cycle) to a steady pitch (two-cycle).
- Close the needle-valve gradually until the engine sound is changing from a four-cycle into a two-cycle in pitch.

Needle-valve adjustment

- Gradually close the needle-valve until the exhaust sound changes from an irregular pitch (four-cycle) to a steady pitch (two-cycle).
- Close the needle-valve gradually until the engine sound is changing from a four-cycle into a two-cycle in pitch.

Disconnect booster

- Disconnect the battery leads from the engine with care so that the plug clip does not touch the rotating propeller.
- If the engine stops when battery leads are disconnected, close the needle-valve a little (approx. 45) further, and restart the engine.

Disconnect booster

- Disconnect the battery leads from the engine with care so that the plug clip does not touch the rotating propeller.
- If the engine stops when battery leads are disconnected, close the needle-valve a little (approx. 45) further, and restart the engine.

Starting a Glow Engine

Needle-valve adjustment(Summary)

Outline

- Overview of Aeromodelling
- 2 Materials and Tools
- 3 Power Sources
- 4 Construction Techniques
- 5 Radio Control of Model

Side-frame type Fuselage

 Take a proper plan and fix it on a board.
Use pins to fix the balsa strips in proper place.
Now glue it to get the shape.

Side-frame type Fuselage

 Once one side is prepared build the other side top of it.
Separate it with razor blade and give it a proper box type shape.

Side-frame type Fuselage

 Now cover it with Japanese tissue.

Bulkhead-stringer Fuselage

 Glue the bulkheads (A) to the vertical keel (B). Now glue the stringers to the proper position.

Bulkhead-stringer Fuselage

 Cover the structure with silk tape or Japanese tissue.

R/C Model

Shaping of Wing Ribs

Wing Details

Anti-Warp Type Wing

Anti-Warp Type Tail

Covering of Wing by Tissue

Covering of Wing by Plastic Sheet

Use of Plastics and Thermocole

Assembling of Model

Outline

- Overview of Aeromodelling
- 2 Materials and Tools
- 3 Power Sources
- 4 Construction Techniques
- 6 Radio Control of Model

Radio Control

A Radio Control consists of following three parts:

- Transmitter,
- Receiver and
- Servos.

6 Channel Transmitter

Receiver and Servos

Servo connection

)

Flaperon Mode (Dual Aileron Servos, CH1 & 6)

A Few Thumb Rules for Model Making

- Wing aspect ratio (b^2/S) should be within **6 to 7.5**.
- 2 Fuselage length 2.5 to 4 times wing chord.
- Of Wing area 18-22 % of wing area.
- Morizontal tail aspect ratio 3 to 5.
- Vertical tail area 8 to 12 % of wing area.
- Vertical tail aspect ratio 1.5 to 3.
- Initially, Wing incidence may be within 0^0 to 2^0 .
- \bullet Provide dihedral of 0^0 to 2^0 .
- **9** Horizontal tail plane incidence angle may be 0^0 to -3^0 .
- \odot Make the thirst line about 0^0 to 2^0 downward.

